Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.394
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731953

Cardiac disorders in cancer patients pose significant challenges to disease prognosis. While it has been established that these disorders are linked to cancer cells, the precise underlying mechanisms remain elusive. In this study, we investigated the impact of cancerous ascites from the rat colonic carcinoma cell line RCN9 on H9c2 cardiomyoblast cells. We found that the ascites reduced mitochondrial volume, increased oxidative stress, and decreased membrane potential in the cardiomyoblast cells, leading to apoptosis and autophagy. Although the ascites fluid contained a substantial amount of high-mobility group box-1 (HMGB1), we observed that neutralizing HMGB1 with a specific antibody mitigated the damage inflicted on myocardial cells. Our mechanistic investigations revealed that HMGB1 activated both nuclear factor κB and phosphoinositide 3-kinases-AKT signals through HMGB1 receptors, namely the receptor for advanced glycation end products and toll-like receptor-4, thereby promoting apoptosis and autophagy. In contrast, treatment with berberine (BBR) induced the expression of miR-181c-5p and miR-340-5p while suppressing HMGB1 expression in RCN9 cells. Furthermore, BBR reduced HMGB1 receptor expression in cardiomyocytes, consequently mitigating HMGB1-induced damage. We validated the myocardial protective effects of BBR in a cachectic rat model. These findings underscore the strong association between HMGB1 and cancer cachexia, highlighting BBR as a promising therapeutic agent for myocardial protection through HMGB1 suppression and modulation of the signaling system.


Apoptosis , Berberine , Cachexia , HMGB1 Protein , Animals , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Berberine/pharmacology , Rats , Cachexia/metabolism , Cachexia/drug therapy , Cachexia/etiology , Cachexia/pathology , Apoptosis/drug effects , Cell Line, Tumor , Autophagy/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Male , Disease Models, Animal , Signal Transduction/drug effects , Oxidative Stress/drug effects , Toll-Like Receptor 4/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Receptor for Advanced Glycation End Products/metabolism , Rats, Sprague-Dawley , Neoplasms/metabolism , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/pathology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism
2.
Exp Gerontol ; 191: 112448, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38697555

BACKGROUND: Stroke is a debilitating condition with high morbidity, disability, and mortality that significantly affects the quality of life of patients. In China, the WenYang FuYuan recipe is widely used to treat ischemic stroke. However, the underlying mechanism remains unknown, so exploring the potential mechanism of action of this formula is of great practical significance for stroke treatment. OBJECTIVE: This study employed network pharmacology, molecular docking, and in vivo experiments to clarify the active ingredients, potential targets, and molecular mechanisms of the WenYang FuYuan recipe in cerebral ischemia-reperfusion injury, with a view to providing a solid scientific foundation for the subsequent study of this recipe. MATERIALS AND METHODS: Active ingredients of the WenYang FuYuan recipe were screened using the traditional Chinese medicine systems pharmacology database and analysis platform. Network pharmacology approaches were used to explore the potential targets and mechanisms of action of the WenYang FuYuan recipe for the treatment of cerebral ischemia-reperfusion injury. The Middle Cerebral Artery Occlusion/Reperfusion 2 h Sprague Dawley rat model was prepared, and TTC staining and modified neurological severity score were applied to examine the neurological deficits in rats. HE staining and Nissl staining were applied to examine the pathological changes in rats. Immunofluorescence labeling and Elisa assay were applied to examine the expression levels of certain proteins and associated factors, while qRT-PCR and Western blotting were applied to examine the expression levels of linked proteins and mRNAs in disease-related signaling pathways. RESULTS: We identified 62 key active ingredients in the WenYang FuYuan recipe, with 222 highly significant I/R targets, forming 138 pairs of medication components and component-targets, with the top five being Quercetin, Kaempferol, Luteolin, ß-sitosterol, and Stigmasterol. The key targets included TP53, RELA, TNF, STAT1, and MAPK14 (p38MAPK). Targets related to cerebral ischemia-reperfusion injury were enriched in chemical responses, enzyme binding, endomembrane system, while enriched pathways included lipid and atherosclerosis, fluid shear stress and atherosclerosis, AGE-RAGE signaling in diabetic complications. In addition, the main five active ingredients and targets in the WenYang FuYuan recipe showed high binding affinity (e.g. Stigmasterol and MAPK14, total energy <-10.5 Kcal/mol). In animal experiments, the WenYang FuYuan recipe reduced brain tissue damage, increased the number of surviving neurons, and down-regulated S100ß and RAGE protein expression. Moreover, the relative expression levels of key targets such as TP53, RELA and p38MAPK mRNA were significantly down-regulated in the WenYang FuYuan recipe group, and serum IL-6 and TNF-a factor levels were reduced. After WenYang FuYuan recipe treatment, the AGE-RAGE signaling pathway and downstream NF-kB/p38MAPK signaling pathway-related proteins were significantly modulated. CONCLUSION: This study utilized network pharmacology, molecular docking, and animal experiments to identify the potential mechanism of the WenYang FuYuan recipe, which may be associated with the regulation of the AGE-RAGE signaling pathway and the inhibition of target proteins and mRNAs in the downstream NF-kB/p38MAPK pathway.


Disease Models, Animal , Drugs, Chinese Herbal , Molecular Docking Simulation , NF-kappa B , Network Pharmacology , Rats, Sprague-Dawley , Reperfusion Injury , Signal Transduction , p38 Mitogen-Activated Protein Kinases , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Drugs, Chinese Herbal/pharmacology , Male , NF-kappa B/metabolism , Signal Transduction/drug effects , Rats , p38 Mitogen-Activated Protein Kinases/metabolism , Receptor for Advanced Glycation End Products/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732159

The receptor for advanced glycation end-products (RAGE) has a central function in orchestrating inflammatory responses in multiple disease states including chronic obstructive pulmonary disease (COPD). RAGE is a transmembrane pattern recognition receptor with particular interest in lung disease due to its naturally abundant pulmonary expression. Our previous research demonstrated an inflammatory role for RAGE following acute exposure to secondhand smoke (SHS). However, chronic inflammatory mechanisms associated with RAGE remain ambiguous. In this study, we assessed transcriptional outcomes in mice exposed to chronic SHS in the context of RAGE expression. RAGE knockout (RKO) and wild-type (WT) mice were delivered nose-only SHS via an exposure system for six months and compared to control mice exposed to room air (RA). We specifically compared WT + RA, WT + SHS, RKO + RA, and RKO + SHS. Analysis of gene expression data from WT + RA vs. WT + SHS showed FEZ1, Slpi, and Msln as significant at the three-month time point; while RKO + SHS vs. WT + SHS identified cytochrome p450 1a1 and Slc26a4 as significant at multiple time points; and the RKO + SHS vs. WT + RA revealed Tmem151A as significant at the three-month time point as well as Gprc5a and Dynlt1b as significant at the three- and six-month time points. Notable gene clusters were functionally analyzed and discovered to be specific to cytoskeletal elements, inflammatory signaling, lipogenesis, and ciliogenesis. We found gene ontologies (GO) demonstrated significant biological pathways differentially impacted by the presence of RAGE. We also observed evidence that the PI3K-Akt and NF-κB signaling pathways were significantly enriched in DEGs across multiple comparisons. These data collectively identify several opportunities to further dissect RAGE signaling in the context of SHS exposure and foreshadow possible therapeutic modalities.


Lung , Mice, Knockout , Receptor for Advanced Glycation End Products , Tobacco Smoke Pollution , Transcriptome , Animals , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Mice , Lung/metabolism , Lung/pathology , Lung/drug effects , Tobacco Smoke Pollution/adverse effects , Mice, Inbred C57BL , Signal Transduction/drug effects , Gene Expression Regulation/drug effects , Male , Gene Expression Profiling
4.
Exp Gerontol ; 190: 112422, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38599502

The onset of Alzheimer's disease is related to neuron damage caused by massive deposition of Aß in the brain. Recent studies suggest that excessive Aß in the brain mainly comes from peripheral blood, and BBB is the key to regulate Aß in and out of the brain. In this study, we explored the pathogenesis of AD from the perspective of Aß transport through the BBB and the effect of QKL injection in AD mice. The results showed that QKL could improve the cognitive dysfunction of AD mice, decrease the level of Aß and Aß transporter-RAGE, which was supported by the results of network pharmacology, molecular docking and molecular dynamics simulation. In conclusion, RAGE is a potential target for QKL's therapeutic effect on AD.


Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Receptor for Advanced Glycation End Products , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Receptor for Advanced Glycation End Products/metabolism , Mice , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Male , Molecular Docking Simulation , Mice, Transgenic , Molecular Dynamics Simulation , Brain/metabolism , Brain/drug effects , Brain/pathology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism
5.
BMC Complement Med Ther ; 24(1): 149, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38581015

BACKGROUND: Diabetes Mellitus is associated with disturbances in male reproductive function and fertility. Studies have shown that oxidative stress with the subsequent inflammation and apoptosis cause these complications in diabetes. Garlic (G) (Allium sativum L) and Citrullus colocynthis (L.) Schrad (C) both have antidiabetic and antioxidant properties. Recently, we demonstrated their synergistic effects in alleviating reproductive complications when administered concomitantly. However, as even medicinal plants in long term usage may lead to some unwanted side effects of their own, we examined whether with half the original doses of these two medicinal plants we could achieve the desired results. METHODS: Thirty-five male Wistar rats were divided into five groups (n = 7/group): Control, Diabetic, Diabetic + G (0.5 ml/100 g BW), Diabetic + C (5 mg/kg BW) and Diabetic + GC (0.5 ml/100 g BW of garlic and 5 mg/kg BW of C. colocynthis) groups. The experimental period was 30 days. RESULTS: Oxidative stress, advanced glycation end products (AGEs), immunoexpression of caspase-3, and expression of mRNAs for receptor for advanced glycation end products (RAGE), NADPH oxidase-4 (NOX-4) and nuclear factor kappa B increased in testis of diabetic rats. Treatment with garlic and C. colocynthis alone showed some beneficial effects, but in the combination form the effectiveness was more profound. CONCLUSIONS: We conclude that the combination therapy of diabetic rats with lower doses is still as efficient as higher doses; therefore, the way forward for reducing complications in long term consumption.


Citrullus colocynthis , Diabetes Mellitus, Experimental , Garlic , Animals , Male , Rats , Antioxidants/pharmacology , Antioxidants/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Garlic/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats, Wistar , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction
6.
Biomolecules ; 14(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38672429

In 1992, a transcendental report suggested that the receptor of advanced glycation end-products (RAGE) functions as a cell surface receptor for a wide and diverse group of compounds, commonly referred to as advanced glycation end-products (AGEs), resulting from the non-enzymatic glycation of lipids and proteins in response to hyperglycemia. The interaction of these compounds with RAGE represents an essential element in triggering the cellular response to proteins or lipids that become glycated. Although initially demonstrated for diabetes complications, a growing body of evidence clearly supports RAGE's role in human diseases. Moreover, the recognizing capacities of this receptor have been extended to a plethora of structurally diverse ligands. As a result, it has been acknowledged as a pattern recognition receptor (PRR) and functionally categorized as the RAGE axis. The ligation to RAGE leads the initiation of a complex signaling cascade and thus triggering crucial cellular events in the pathophysiology of many human diseases. In the present review, we intend to summarize basic features of the RAGE axis biology as well as its contribution to some relevant human diseases such as metabolic diseases, neurodegenerative, cardiovascular, autoimmune, and chronic airways diseases, and cancer as a result of exposure to AGEs, as well as many other ligands.


Glycation End Products, Advanced , Inflammation , Receptor for Advanced Glycation End Products , Humans , Receptor for Advanced Glycation End Products/metabolism , Glycation End Products, Advanced/metabolism , Inflammation/metabolism , Signal Transduction , Neoplasms/metabolism , Animals , Cardiovascular Diseases/metabolism , Neurodegenerative Diseases/metabolism , Metabolic Diseases/metabolism , Autoimmune Diseases/metabolism
7.
Nat Immunol ; 25(4): 671-681, 2024 Apr.
Article En | MEDLINE | ID: mdl-38448779

Cognitive impairment is a frequent manifestation of neuropsychiatric systemic lupus erythematosus, present in up to 80% of patients and leading to a diminished quality of life. In the present study, we used a model of lupus-like cognitive impairment that is initiated when antibodies that crossreact with excitatory neuronal receptors penetrate the hippocampus, causing immediate, self-limited, excitotoxic death of hippocampal neurons, which is then followed by a significant loss of dendritic complexity in surviving neurons. This injury creates a maladaptive equilibrium that is sustained in mice for at least 1 year. We identified a feedforward loop of microglial activation and microglia-dependent synapse elimination dependent on neuronal secretion of high mobility group box 1 protein (HMGB1) which binds the receptor for advanced glycation end products (RAGE) and leads to microglial secretion of C1q, upregulation of interleukin-10 with consequent downregulation of leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), an inhibitory receptor for C1q. Treatment with a centrally acting angiotensin-converting enzyme inhibitor or with an angiotensin-receptor blocker restored a healthy equilibrium, microglial quiescence and intact spatial memory.


Autoantibodies , HMGB1 Protein , Animals , Mice , Complement C1q , HMGB1 Protein/metabolism , Neuroinflammatory Diseases , Quality of Life , Receptor for Advanced Glycation End Products/metabolism
8.
J Clin Hypertens (Greenwich) ; 26(4): 431-440, 2024 Apr.
Article En | MEDLINE | ID: mdl-38523455

We measured the levels of High-Mobility Group Box 1 (HMGB1), Receptor for Advanced Glycation Endproducts (RAGE), T Helper 17 cells (Th17), Regulatory T cells (Treg), and related cytokines in the peripheral blood of patients with severe preeclampsia (SPE) complicated with acute heart failure (AHF) to explore the expression changes in these indicators. In total, 96 patients with SPE admitted to Gansu Provincial Maternity and Child-care Hospital between June 2020 and June 2022 were included in the study. The patients were divided into SPE+AHF (40 patients) and SPE (56 patients) groups based on whether they suffered from AHF. Additionally, 56 healthy pregnant women who either received prenatal examinations or were admitted to our hospital for delivery during the same period were selected as the healthy control group. An enzyme-linked immunosorbent assay was performed to detect the expression levels of HMGB1, RAGE, interleukin (IL)-17, IL-6, transforming growth factor ß (TGF-ß), IL-10, and NT-proBNP in plasma. Flow cytometry was employed to determine the percentages of Th17 and Treg cells. Compared to the healthy control group, the SPE+AHF and SPE groups had higher plasma levels of HMGB1 and RAGE expression, higher Th17 percentage and Th17/Treg ratio, and lower Treg percentage. Compared to the SPE group, the SPE+AHF group had higher plasma levels of HMGB1 and RAGE expression, higher Th17 percentage and Th17/Treg ratio, and lower Treg percentage (P < .05). In patients with SPE with AHF, plasma HMGB1 was positively correlated with RAGE, Th17, Th17/Treg, IL-17, and IL-6 and was negatively correlated with TGF-ß and IL-10 (P < .05). Our findings revealed that patients with SPE with AHF had elevated levels of HMGB1 and RAGE while exhibiting Th17/Treg immune imbalance, suggesting that the abnormal expression of these indicators may be involved in the pathogenesis of SPE with AHF.


HMGB1 Protein , Pre-Eclampsia , Female , Humans , Pregnancy , Cytokines , Glycation End Products, Advanced/metabolism , HMGB1 Protein/metabolism , Hypertension/metabolism , Interleukin-10/metabolism , Interleukin-6 , Pre-Eclampsia/metabolism , Receptor for Advanced Glycation End Products/metabolism , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/metabolism
9.
Biopharm Drug Dispos ; 45(2): 93-106, 2024 Apr.
Article En | MEDLINE | ID: mdl-38488691

Alzheimer's disease is a complex multifactorial neurodegenerative disorder wherein age is a major risk factor. The appropriateness of the Hartley guinea pig (GP), which displays high sequence homologies of its amyloid-ß (Aß40 and Aß42) peptides, Mdr1 and APP (amyloid precursor protein) and similarity in lipid handling to humans, was appraised among 9-40 weeks old guinea pigs. Protein expression levels of P-gp (Abcb1) and Cyp46a1 (24(S)-hydroxylase) for Aß40, and Aß42 efflux and cholesterol metabolism, respectively, were decreased with age, whereas those for Lrp1 (low-density lipoprotein receptor related protein 1), Rage (receptor for advanced glycation endproducts) for Aß efflux and influx, respectively, and Abca1 (the ATP binding cassette subfamily A member 1) for cholesterol efflux, were unchanged among the ages examined. There was a strong, negative correlation of the brain Aß peptide concentrations and Abca1 protein expression levels with free cholesterol. The correlation of Aß peptide concentrations with Cyp46a1 was, however, not significant, and concentrations of the 24(S)-hydroxycholesterol metabolite revealed a decreasing trend from 20 weeks old toward 40 weeks old guinea pigs. The composite data suggest a role for free cholesterol on brain Aß accumulation. The decreases in P-gp and Lrp1 protein levels should further exacerbate the accumulation of Aß peptides in guinea pig brain.


Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Guinea Pigs , Humans , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Receptor for Advanced Glycation End Products/metabolism , Cholesterol 24-Hydroxylase/metabolism , Brain/metabolism , Aging , Cholesterol/metabolism
10.
Clin Immunol ; 262: 110178, 2024 May.
Article En | MEDLINE | ID: mdl-38460892

Controlling the excessive inflammatory response is one of the key ways to reduce the severity and mortality of severe influenza virus infections. RAGE is involved in inflammatory responses and acute lung injuries. Here, we investigated the role of RAGE and its potential application as a target for severe influenza treatment through serological correlation analysis for influenza patients, and treatment with the RAGE inhibitor FPS-ZM1 on A549 cells or mice with influenza A (H1N1) infection. The results showed high levels of RAGE were correlated with immunopathological injury and severity of influenza, and FPS-ZM1 treatment increased the viability of A549 cells with influenza A infection and decreased morbidity and mortality of influenza A virus infection in mice. The RAGE/NF-κb inflammatory signaling pathway is a major targeting pathway for FPS-ZM1 treatment in severe influenza. These findings provide further insights into the immune injury of severe influenza and a potential targeting candidate for the disease treatment.


Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Mice , Animals , Receptor for Advanced Glycation End Products/metabolism , Benzamides/pharmacology
11.
Protein J ; 43(2): 243-258, 2024 Apr.
Article En | MEDLINE | ID: mdl-38431537

S100A8 and S100A9 belong to the calcium-binding, damage associated molecular pattern (DAMP) proteins shown to aggravate the pathogenesis of rheumatoid arthritis (RA) through their interaction with the TLR4, RAGE and CD36 receptors. S100A8 and S100A9 proteins tend to exist in monomeric, homo and heterodimeric forms, which have been implicated in the pathogenesis of RA, via interacting with Pattern Recognition receptors (PRRs). The study aims to assess the influence of changes in the structure and biological assembly of S100A8 and S100A9 proteins as well as their interaction with significant receptors in RA through computational methods and surface plasmon resonance (SPR) analysis. Molecular docking analysis revealed that the S100A9 homodimer and S100A8/A9 heterodimer showed higher binding affinity towards the target receptors. Most S100 proteins showed good binding affinity towards TLR4 compared to other receptors. Based on the 50 ns MD simulations, TLR4, RAGE, and CD36 formed stable complexes with the monomeric and dimeric forms of S100A8 and S100A9 proteins. However, SPR analysis showed that the S100A8/A9 heterodimers formed stable complexes and exhibited high binding affinity towards the receptors. SPR data also indicated that TLR4 and its interactions with S100A8/A9 proteins may play a primary role in the pathogenesis of RA, with additional contributions from CD36 and RAGE interactions. Subsequent in vitro and in vivo investigations are warranted to corroborate the involvement of S100A8/A9 and the expression of TLR4, RAGE, and CD36 in the pathophysiology of RA.


CD36 Antigens , Calgranulin A , Calgranulin B , Molecular Docking Simulation , Receptor for Advanced Glycation End Products , Toll-Like Receptor 4 , Calgranulin B/chemistry , Calgranulin B/metabolism , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/metabolism , Calgranulin A/chemistry , Calgranulin A/metabolism , Calgranulin A/genetics , Humans , CD36 Antigens/chemistry , CD36 Antigens/metabolism , CD36 Antigens/genetics , Receptor for Advanced Glycation End Products/chemistry , Receptor for Advanced Glycation End Products/metabolism , Protein Binding , Molecular Dynamics Simulation , Surface Plasmon Resonance , Protein Multimerization , Arthritis, Rheumatoid/metabolism
12.
Am J Physiol Cell Physiol ; 326(4): C1080-C1093, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38314727

Advanced glycation end-products (AGEs) stochastically accrue in skeletal muscle and on collagen over an individual's lifespan, stiffening the muscle and modifying the stem cell (MuSC) microenvironment while promoting proinflammatory, antiregenerative signaling via the receptor for advanced glycation end-products (RAGEs). In the present study, a novel in vitro model was developed of this phenomenon by cross linking a 3-D collagen scaffold with AGEs and investigating how myoblasts responded to such an environment. Briefly, collagen scaffolds were incubated with d-ribose (0, 25, 40, 100, or 250 mM) for 5 days at 37°C. C2C12 immortalized mouse myoblasts were grown on the scaffolds for 6 days in growth conditions for proliferation, and 12 days for differentiation and fusion. Human primary myoblasts were also used to confirm the C2C12 data. AGEs aberrantly extended the DNA production stage of C2C12s (but not in human primary myoblasts) which is known to delay differentiation in myogenesis, and this effect was prevented by RAGE inhibition. Furthermore, the differentiation and fusion of myoblasts were disrupted by AGEs, which were associated with reductions in integrins and suppression of RAGE. The addition of S100b (RAGE agonist) recovered the differentiation and fusion of myoblasts, and the addition of RAGE inhibitors (FPS-ZM1 and Azeliragon) inhibited the differentiation and fusion of myoblasts. Our results provide novel insights into the role of the AGE-RAGE axis in skeletal muscle aging, and future work is warranted on the potential application of S100b as a proregenerative factor in aged skeletal muscle.NEW & NOTEWORTHY Collagen cross-linked by advanced glycation end-products (AGEs) induced myoblast proliferation but prevented differentiation, myotube formation, and RAGE upregulation. RAGE inhibition occluded AGE-induced myoblast proliferation, while the delivery of S100b, a RAGE ligand, recovered fusion deficits.


Maillard Reaction , Muscle, Skeletal , Mice , Humans , Animals , Aged , Receptor for Advanced Glycation End Products/metabolism , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Cell Differentiation/physiology , Collagen , Muscle Development , Glycation End Products, Advanced , S100 Calcium Binding Protein beta Subunit
13.
Exp Mol Med ; 56(3): 630-645, 2024 Mar.
Article En | MEDLINE | ID: mdl-38424194

The meniscus is vital for maintaining knee homeostasis and function. Meniscal calcification is one of the earliest radiological indicators of knee osteoarthritis (KOA), and meniscal calcification is associated with alterations in biomechanical properties. Meniscal calcification originates from a biochemical process similar to vascular calcification. Advanced glycation end products (AGEs) and their receptors (RAGEs) reportedly play critical roles in vascular calcification. Herein, we investigated whether targeting AGE-RAGE is a potential treatment for meniscal calcification. In our study, we demonstrated that AGE-RAGE promotes the osteogenesis of meniscal cells and exacerbates meniscal calcification. Mechanistically, AGE-RAGE activates mTOR and simultaneously promotes ATF4 accumulation, thereby facilitating the ATF4-mTOR positive feedback loop that enhances the osteogenic capacity of meniscal cells. In this regard, mTOR inhibits ATF4 degradation by reducing its ubiquitination, while ATF4 activates mTOR by increasing arginine uptake. Our findings substantiate the unique role of AGE-RAGE in the meniscus and reveal the role of the ATF4-mTOR positive feedback loop during the osteogenesis of meniscal cells; these results provide potential therapeutic targets for KOA.


Meniscus , Osteoarthritis, Knee , Vascular Calcification , Humans , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Feedback , Glycation End Products, Advanced/metabolism , Meniscus/metabolism , Receptor for Advanced Glycation End Products/metabolism , TOR Serine-Threonine Kinases , Vascular Calcification/metabolism
14.
Front Immunol ; 15: 1303937, 2024.
Article En | MEDLINE | ID: mdl-38384464

Introduction: Chemotherapy-induced neuropathic pain (CINP) is one of the main adverse effects of chemotherapy treatment. At the spinal level, CINP modulation involves glial cells that upregulate Toll-like receptor 4 (TLR4) and signaling pathways, which can be activated by pro-inflammatory mediators as the high mobility group box-1 (HMGB1). Objective: To evaluate the spinal role of HMGB1 in the paclitaxel-induced neuropathic pain via receptor for advanced glycation end products (RAGE) and TLR4 activation expressed in glial cells. Methods: Male C57BL/6 Wild type and TLR4 deficient mice were used in the paclitaxel-induced neuropathic pain model. The nociceptive threshold was measured using the von Frey filament test. In addition, recombinant HMGB1 was intrathecally (i.t.) injected to confirm its nociceptive potential. To evaluate the spinal participation of RAGE, TLR4, NF-kB, microglia, astrocytes, and MAPK p38 in HMGB1-mediated nociceptive effect during neuropathic pain and recombinant HMGB1-induced nociception, the drugs FPS-ZM1, LPS-RS, PDTC, minocycline, fluorocitrate, and SML0543 were respectively administrated by i.t. rout. Microglia, astrocytes, glial cells, RAGE, and TLR4 protein expression were analyzed by Western blot. ELISA immunoassay was also used to assess HMGB1, IL-1ß, and TNF-α spinal levels. Results: The pharmacological experiments demonstrated that spinal RAGE, TLR4, microglia, astrocytes, as well as MAPK p38 and NF-kB signaling are involved with HMGB1-induced nociception and paclitaxel-induced neuropathic pain. Furthermore, HMGB1 spinal levels were increased during the early stages of neuropathic pain and associated with RAGE, TLR4 and microglial activation. RAGE and TLR4 blockade decreased spinal levels of pro-inflammatory cytokines during neuropathic pain. Conclusion: Taken together, our findings indicate that HMGB1 may be released during the early stages of paclitaxel-induced neuropathic pain. This molecule activates RAGE and TLR4 receptors in spinal microglia, upregulating pro-inflammatory cytokines that may contribute to neuropathic pain.


HMGB1 Protein , Neuralgia , Animals , Male , Mice , Cytokines/metabolism , HMGB1 Protein/metabolism , Hyperalgesia/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Neuralgia/chemically induced , Neuralgia/metabolism , NF-kappa B , Paclitaxel/toxicity , Receptor for Advanced Glycation End Products/metabolism , Toll-Like Receptor 4/metabolism
15.
Complement Ther Med ; 81: 103027, 2024 May.
Article En | MEDLINE | ID: mdl-38336011

BACKGROUND: Diabetic nephropathy (DN) is a common complication of type 2 diabetes. Okra (Abelmoschus esculentus L) is reported to have anti-diabetic effects. The present study aimed to investigate the effects of dried okra extract (DOE) supplementation on lipid profile, renal function indices, and expression of inflammatory genes, as well as serum level of soluble Receptor for Advanced glycation end products (sRAGE) in patients with DN. METHODS: In this triple-blind randomized placebo-controlled clinical trial, 64 eligible patients with DN received either 125 mg of DOE or placebo daily along with DN-related nutritional recommendations for 10 weeks. Changes in kidney indices including proteinuria and estimated glomerular filtration rate (eGFR), lipid profile, serum SRAGE, as well as the expression of RAGE, ICAM-1, and IL-1 genes were measured over 10 weeks. RESULTS: After adjustment for the potential confounders, between-group analyses showed no significant differences in terms of lipid profile, kidney function indices, sRAGE, and RAGE-related inflammatory genes expression after 10 weeks. CONCLUSION: Daily 125 mg DOE along with nutritional recommendations on top of usual care did not lead to significant changes in renal function indices, lipid profile, and inflammatory genes expression in patients with DN.


Abelmoschus , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetic Nephropathies/drug therapy , Abelmoschus/metabolism , Diabetes Mellitus, Type 2/metabolism , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/therapeutic use , Kidney/metabolism , Lipids
16.
Respir Res ; 25(1): 93, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38378600

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common respiratory disease and represents the third leading cause of death worldwide. This study aimed to investigate miRNA regulation of Receptor for Advanced Glycation End-products (RAGE), a causal receptor in the pathogenesis of cigarette smoke (CS)-related COPD, to guide development of therapeutic strategies. METHODS: RAGE expression was quantified in lung tissue of COPD patients and healthy controls, and in mice with CS-induced COPD. RNA-sequencing of peripheral blood from COPD patients with binding site prediction was used to screen differentially expressed miRNAs that may interact with RAGE. Investigation of miR-23a-5p as a potential regulator of COPD progression was conducted with miR-23a-5p agomir in COPD mice in vivo using histology and SCIREQ functional assays, while miR-23a-5p mimics or RAGE inhibitor were applied in 16-HBE human bronchial epithelial cells in vitro. RNA-sequencing, ELISA, and standard molecular techniques were used to characterize downstream signaling pathways in COPD mice and 16-HBE cells treated with cigarette smoke extract (CSE). RESULTS: RAGE expression is significantly increased in lung tissue of COPD patients, COPD model mice, and CSE-treated 16-HBE cells, while inhibiting RAGE expression significantly reduces COPD severity in mice. RNA-seq analysis of peripheral blood from COPD patients identified miR-23a-5p as the most significant candidate miRNA interaction partner of RAGE, and miR-23a-5p is significantly downregulated in mice and cells treated with CS or CSE, respectively. Injection of miR-23a-5p agomir leads to significantly reduced airway inflammation and alleviation of symptoms in COPD mice, while overexpressing miR-23a-5p leads to improved lung function. RNA-seq with validation confirmed that reactive oxygen species (ROS) signaling is increased under CSE-induced aberrant upregulation of RAGE, and suppressed in CSE-stimulated cells treated with miR-23a-5p mimics or overexpression. ERK phosphorylation and subsequent cytokine production was also increased under RAGE activation, but inhibited by increasing miR-23a-5p levels, implying that the miR-23a-5p/RAGE/ROS axis mediates COPD pathogenesis via ERK activation. CONCLUSIONS: This study identifies a miR-23a-5p/RAGE/ROS signaling axis required for pathogenesis of COPD. MiR-23a-5p functions as a negative regulator of RAGE and downstream activation of ROS signaling, and can inhibit COPD progression in vitro and in vivo, suggesting therapeutic targets to improve COPD treatment.


MicroRNAs , Pulmonary Disease, Chronic Obstructive , Animals , Humans , Mice , Lung/metabolism , MicroRNAs/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Reactive Oxygen Species/metabolism , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism
17.
Sci Rep ; 14(1): 4685, 2024 02 26.
Article En | MEDLINE | ID: mdl-38409584

The occurrence of nonenzymatic glycosylation reactions in skin fibroblasts can lead to severe impairment of skin health. To investigate the protective effects of the major functional ingredient from Gentianaceae, gentiopicroside (GPS) on fibroblasts, network pharmacology was used to analyse the potential pathways and targets underlying the effects of GPS on skin. At the biochemical and cellular levels, we examined the inhibitory effect of GPS on AGEs, the regulation by GPS of key ECM proteins and vimentin, the damage caused by GPS to the mitochondrial membrane potential and the modulation by GPS of inflammatory factors such as matrix metalloproteinases (MMP-2, MMP-9), reactive oxygen species (ROS), and IL-6 via the RAGE/NF-κB pathway. The results showed that GPS can inhibit AGE-induced damage to the dermis via multiple pathways. The results of biochemical and cellular experiments showed that GPS can strongly inhibit AGE production. Conversely, GPS can block AGE-induced oxidative stress and inflammatory responses in skin cells by disrupting AGE-RAGE signalling, maintain the balance of ECM synthesis and catabolism, and alleviate AGE-induced dysfunctions in cellular behaviour. This study provides a theoretical basis for the use of GPS as an AGE inhibitor to improve skin health and alleviate the damage caused by glycosylation, showing its potential application value in the field of skin care.


Glycation End Products, Advanced , Iridoid Glucosides , Maillard Reaction , Glycation End Products, Advanced/metabolism , Receptor for Advanced Glycation End Products/metabolism , NF-kappa B/metabolism , Oxidative Stress , Fibroblasts/metabolism
18.
Chemistry ; 30(20): e202303255, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38317623

RAGE is a transmembrane receptor of immunoglobulin family that can bind various endogenous and exogenous ligands, initiating the inflammatory downstream signaling pathways, including inflammaging. Therefore, RAGE represents an attractive drug target for age-related diseases. For the development of small-molecule RAGE antagonists, we employed protein-templated dynamic combinatorial chemistry (ptDCC) using RAGE's VC1 domain as a template, the first application of this approach in the context of RAGE. The affinities of DCC hits were validated using microscale thermophoresis. Subsequent screening against AGE2 (glyceraldehyde-modified AGE)-sRAGE (solubleRAGE) (AGE2-BSA/sRAGE) interaction using ELISA tests led to the identification of antagonists with micromolar potency. Our findings not only demonstrate the successful application of ptDCC on RAGE but also highlight its potential to address the pressing need for alternative strategies for the development of small-molecule RAGE antagonists, an area of research that has experienced a slowdown in recent years.


Signal Transduction , Receptor for Advanced Glycation End Products/chemistry , Receptor for Advanced Glycation End Products/metabolism
19.
FEBS J ; 291(9): 1944-1957, 2024 May.
Article En | MEDLINE | ID: mdl-38335056

The transmembrane receptor for advanced glycation end products (RAGE) is a signaling receptor for many damage- and pathogen-associated molecules. Activation of RAGE is associated with inflammation and an increase in reactive oxygen species (ROS) production. Although several sources of ROS have been previously suggested, how RAGE induces ROS production is still unclear, considering the multiple targets of pathogen-associated molecules. Here, using acute brain slices and primary co-culture of cortical neurons and astrocytes, we investigated the effects of a range of synthetic peptides corresponding to the fragments of the RAGE V-domain on redox signaling. We found that the synthetic fragment (60-76) of the RAGE V-domain induces activation of ROS production in astrocytes and neurons from the primary co-culture and acute brain slices. This effect occurred through activation of RAGE and could be blocked by a RAGE inhibitor. Activation of RAGE by the synthetic fragment stimulates ROS production in NADPH oxidase (NOX). This RAGE-induced NOX activation produced only minor decreases in glutathione levels and increased the rate of lipid peroxidation, although it also reduced basal and ß-amyloid induced cell death in neurons and astrocytes. Thus, specific activation of RAGE induces redox signaling through NOX, which can be a part of a cell protective mechanism.


Astrocytes , Coculture Techniques , NADPH Oxidases , Neurons , Reactive Oxygen Species , Receptor for Advanced Glycation End Products , Astrocytes/metabolism , Astrocytes/drug effects , Neurons/metabolism , Neurons/drug effects , Animals , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Reactive Oxygen Species/metabolism , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Neuroprotection , Cells, Cultured , Oxidation-Reduction , Signal Transduction , Mice , Lipid Peroxidation/drug effects , Rats , Enzyme Activation/drug effects , Glutathione/metabolism
20.
Brain Res ; 1828: 148790, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38272156

A strong relationship between Alzheimer's disease (AD) and vascular dysfunction has been the focus of increasing attention in aging societies. In the present study, we examined the long-term effect of scallop-derived plasmalogen (sPlas) on vascular remodeling-related proteins in the brain of an AD with cerebral hypoperfusion (HP) mouse model. We demonstrated, for the first time, that cerebral HP activated the axis of the receptor for advanced glycation endproducts (RAGE)/phosphorylated signal transducer and activator of transcription 3 (pSTAT3)/provirus integration site for Moloney murine leukemia virus 1 (PIM1)/nuclear factor of activated T cells 1 (NFATc1), accounting for such cerebral vascular remodeling. Moreover, we also found that cerebral HP accelerated pSTAT3-mediated astrogliosis and activation of the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, probably leading to cognitive decline. On the other hand, sPlas treatment attenuated the activation of the pSTAT3/PIM1/NFATc1 axis independent of RAGE and significantly suppressed NLRP3 inflammasome activation, demonstrating the beneficial effect on AD.


Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plasmalogens , NFI Transcription Factors/metabolism , Inflammasomes/metabolism , STAT3 Transcription Factor/metabolism , Receptor for Advanced Glycation End Products/metabolism , Vascular Remodeling
...